
Extending Complex Ad-Hoc OLAP

Theodore Johnson Damianos Chatziantoniou
Database Research Dept. Dept. of CS
AT&T Labs - Research Stevens Institute of Technology

johnsont@research.att.com damianos@cs.stevens-tech.edu

Abstract

Large scale data analysis and mining activities require so-
phisticated information extraction queries. Many queries
require complex aggregation, and many of these aggregates
are non-distributive. Conventional solutions to this problem
involve defining User Defined Aggregate Functions (UDAFs).
However, the use of UDAFs entails several problems. Defin-
ing a new UDAF can be a significant burden for the user,
and optimizing queries involving UDAFs is difficult because
of the “black boxn nature of the UDAF.

In this paper, we present a method for expressing nested
aggregates in a declarative way. A nested aggregate, which is
a rollup of another aggregated value, expresses a wide range
of useful non-distributive aggregation. For example, most
frequent type aggregation can be naturally expressed using
nested aggregation, e.g. “For each product, report its total
sales during the month with the largest total safes of the
product”. By expressing complex aggregates declaratively,
we relieve the user of the burden of defining UDAFs, and
allow the evaluation of the complex aggregates to be opti-
mized.

We use the Extended Multi-Feature (EMF) syntax as the
basis for expressing nested aggregation. An advantage of
this approach is that EMF SQL can already express a wide
range of complex aggregation in a succinct way, and EMF
SQL is easily optimized into efficient query plans. We show
that nested aggregation queries can be evaluated efficiently
by using a small extension to the EMF SQL query evaluation
algorithm. A side effect of this extension is to extend EMF
SQL to permit complex aggregation of data from multiple
sources.

1 Introduction

The growing use of data warehouses has pointed out the
need for query languages and tools that are more sophis-
ticated than standard SQL on relational databases. Re-
cent research has developed some approaches for these lan-
guages and tools. Gray, Bosworth, Layman, and Pirahesh
[14] have proposed the Cube operator. Sarawagi, Thomas,

Permission to make digital or hard copies of all or part of this work for

personal Or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advant
-age and that copies bear this notice and the full citation on the first page.
To copy otherwise, to repubtish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee.
CIKM ‘99 1 l/99 Kansas City, MO, USA

D 1999 ACM l-58113-146.1/99/0010...$5.00

and Agrawal [25] show how frequent sets can be computed
by generating SQL queries. Gingras and Lakshmanan [12]
propose an algebra which allows complex data restructuring
and aggregation at multiple granularities. Microsoft Corpo-
ration is developing MDX (MultiDimensional expressions),
a language for making multiple OLAP queries [lo].

On-line analytical processing has attracted a lot of atten-
tion recently because large enterprises want to analyze the
warehouses of their collected data. Although there exists
literature on modeling and conceptualizing OLAP [15, 2, 221,
research has been mainly focused on expression, evaluation,
maintenance, and usage of datacubes [14, 11. The processing
and optimization of complex ad-hoc OLAP queries has been
given little attention [31,8], although certain query process-
ing techniques may be applicable [9, 261. Better evaluation
of these queries is the motivation of several SQL syntactic
extensions proposed in the past [20, 24, 71.

A number of commercial vendors, such as COGNOS,
Business Objects, Hyperion (Essbase), and Oracle Express,
provide multidimensional data analysis and OLAP tools.
Most of these systems have their own query language, not
based on SQL. Some require data to be stored in their pro-
prietary storage format (e.g. ESSBASE), while others either
utilize standard database systems (e.g. Business Objects)
or first extract the data to flat fIe format and then process
them. While these products provide a suite of multidimen-
sional data analysis tools (rollup, drill down, slicing, dicing,
etc.), they do not provide facilities for the complex ad-hoc
OLAP queries that are the subject of this paper.

Conventional aggregate functions (e.g., min, max, count,
sum, etc.) have the property of being distributioe - that is,
it is easy to combine subtotals into grand totals. While this
property of the aggregate functions enables their efficient
computation [13, 271, often the user desires a more com-
plex aggregate. Examples include percent-of-total, moving-
average, most-frequent, and median [14, 171. However, these
aggregates may be difficult to compute. For example, most-
frequent and median are holistic (summing parts into a grand
total requires unbounded temporary storage) [14].

The conventional solution to providing new complex ag-
gregates for a query is to define a User Defined Aggregate
Function (UDAF) m an object-relational DBMS [17, 3, 161.
The user supplies modules that initialize an aggregate, add a
tuple to it, and compute a final value. For optimization [23,
291, the user registers information about the aggregate that
can be used by the optimizer. To allow parallelism, the user
must supply additional modules and registration information
[17, 231.

Our recent work on the Extended Multi-Featured syntax

170

(EMF SQL) is motivated by the desire to express a wide
range of complex aggregates in a succinct and declarative
manner. We had found that users of data warehouses (at
AT&T, and at a medical school [18]) were frequently unable
to express their complex aggregation queries in SQL. An-
swering these queries required the help of a database admin-
istrator to write the complex, slow (and frequently buggy)
SQL or procedural code. As a result, these queries are
usually answered late, or not at all.

The EMF syntax allows a very precise control over the
range of tuples used to compute an aggregate. As a re-
sult, complex aggregates including percent-of-total, moving-
average, or median can be easily expressed, modified, and
generalized without resorting to UDAFs. We present some
examples in Section 2 (examples 2.1 and 2.2 appear in
[IS]). EMF SQL has an efficient evaluation algorithm, and
many automatic optimizations, including parallelization, are
possible.

The major focus of this paper is to introduce an exten-
sion to the EMF SQL syntax that allows the expression of
complex non-distributive aggregates in a declarative manner
using standard aggregates built into SQL (plus one addi-
tional aggregate). The idea is to use nested aggregation,
i.e. aggregation over aggregated quantities. This extension
allows the expression of a subset of holistic aggregates, e.g.
those that can be expressed as rollups of other aggregates.
One example of this type of aggregate is the most-frequent
aggregate, which is the max of a count. Nested aggregation
allows the user to express generalizations of this type of
query, for example “For each product, what is the maximum
of the average monthly sales, during 1997”. A wide range of
other queries can be expressed as well, and we provide some
examples.

Evaluating nested aggregates requires access to multiple
data sources. We expand on this idea to allow EMF queries
access to multiple fact tables. The modifications to the
EMF syntax and evaluation algorithm are minor, but they
permit the expression of aggregation queries that range over
multiple data sources. We give several examples of this type
of query.

We show that the evaluation of nested EMF queries can
be performed by a small extension to the evaluation algo-
rithm for EMF queries over multiple fact tables. Because
the efficient EMF query evaluation algorithm can be applied
with only a few modifications, the query optimizations that
we developed in previous work (including scalable evaluation
and parallelization) can be applied. We also present some
optimizations that can be made for the new extensions.

In Section 2, we present the EMF syntax and evaluation
algorithm for background. In Section 3, we show how to
extend the EMF syntax to express queries over multiple
fact tables. In Section 4, we discuss nested aggregation. In
Section 5, we discuss query plan optimizations. Finally, in
Section 7 we conclude.

2 Extended Multi-Feature Syntax

In previous works [4, 61 we have developed the Extended
Multi-Feature syntax (EMF SQL). Because the material in
this paper is phrased in terms of EMF SQL, we review it in
this section.

We have found that ad-hoc decision support queries present
two key features that can be exploited either in developing
query optimization techniques, or in equipping a language
with appropriate syntactic extensions:

First, OLAP queries group the relation(s) on a set
of attributes and perform some complex (or simple)
operation within each group. Although SQL handles
simple operations within each group well (e.g. compute
avg (salary)), it requires a high degree of redundancy
(joins, correlated subqueries) to express more complex
operations within each group. This has been addressed
in [7, 81.

Second, OLAP queries may correlate results of group-
ings on di%ferent sets of attributes. These sets are
usually related somehow (e.g. the one is subset of the
other.)

The extended multi-feature syntax, a minor syntactic
extension of SQL, addresses both of these issues and is a
generalization of the multi-feature syntax discussed in [7]. A
brief discussion of EMF SQL follows.

2.1 Extended Multi-Feature Queries

The idea behind the extended multifeature syntax [4] is sim-
ple. For each group, the user defines one or more grouping
variables. Each grouping variable represents a subset of
the entire relation, whose range is constrained by the such
that clause. The defining condition of a grouping variable
may contain comparisons between ordinary attributes and
constants, aggregates of the group, and aggregates of pre-
viously defined grouping variables. As a result, one may
define a series of selections and aggregations over the same
grouping attributes. The group itself can be considered as
one grouping variable, denoted as X0. Aggregates of the
grouping variables can appear in the select clause. For a
more formal definition of EMF-SQL, see [53.

This small extension to SQL allows the user to express
a large class of decision support queries in a simple and
declarative fashion. This is mainly achieved because the
group by clause acts as an implicit iterator over groups, the
same way the from clause acts for the tuples of a relation.
At the same time, grouping variables define the processing
to be done for each value of the grouping attributes. This
syntax also contributes to the second characteristic of OLAP
queries, identified at the begin of Section 2.

2.1.1 Examples

Example 2.1: Suppose that We want to compute for each
customer the average sale amount in “NY”, in “NJ” and in
“CT” (the tri-state area). This query pivots a portion of the
state column and creates columns. Its expression in EMF
SQL is:

Select cust, avg(x.amount),avg(y.amount),
avg(z.amount)

From Sales
Where year=1997
Group By cust ; x,y,z
Such That x.cust=cust and x.state='NY',

y.cust=cust and y,state=‘CT’,
z.cust=cust and z.state=‘NJ’

Example 2.2: Suppose that one wants to determine, for
each product, by which month had half of the 1998 yearly
sales occurred. Here we need to compute a generalized me-
dian. This query can be expressed using the extended multi-
feature syntax as [18]:

select Product, Month
from Sales
Where Year = 1998
Group By Product, Month ; X, Y, 2
Such That (X.Product=Product and X.Month=Month),

(Y.Product=Product and Y.Month<Month),
(Z.Product=Product)

Having sum(Y.amount) < sum(Z.amount)/2 AND
sum(Y.amount)+sum(X.amount) >= snllI(Z.amount)/2

The Sales relation is grouped by Product, Month. The
grouping variable X denotes sales of the Product during
the Month, Y denotes sales of the Product during previous
Months, and 2 represents sales during the entire year. The
having clause selects for output only those months whose
sales straddle the half-way mark of the yearly sales. Note
that grouping variables Y and Z contain tuples that are not
in the group.

This query shows how many other complex aggregates
can be computed. If we were interested in the number of
sales, as opposed to their dollar quantity, we would use
count aggregates instead of sum aggregates. The quantity
sum(X.sales)/sum(Z. so es is a percent-of-total aggregates. 1)
The grouping variable Y represents a running sum. With
an additional constraint (e.g., Y.Month > Month - 3), it
represents a moving window (e.g., for a moving average). 0

Example 2.3: Assume that we are interested to find for
each product the average quantity sold before and after each
month of 1997 (a generalization of a moving-average aggre-
gate).

Select Product, Month, avg(X.quantity) ,
avg (Y. quantItyI

From Sales
Where Year=‘1997’
Group By Product, Month ; X, Y
Such That (X.Product=Product and X.Month < Month),

(Y.Product=Product and Y,Month > Month)

For each product and month of “1997” we define two sets, X
and Y. X contains all the sales of the current group’s prod-
uct before the current group’s month (X. Month < Month) and
Y the sales of that product after that month (Y .Month >
Month.) 0

2.1.2 Performance

As is reported in [4, 51, we wrote a translator that generates
C or PL/SQL code from an EMF query. We wrote SQL
and EMF queries for Examples 2.1 and 2.3, and generated
PL/SQL and C programs from the EMF queries. We used an
Oracle 7 database to execute the SQL and PL/SQL queries.
In spite of the high overhead required to execute a PL/SQL
program, these versions of the queries are substantially faster
than the SQL versions. When implemented in C, the queries
execute two orders of magnitude faster.

We also ran experiments with Oracle 8. We found that
the first time we executed a query, the query execution time
is similar to that achieved by Oracle 7. However on sub-
sequent executions, the query was evaluated two to three
times faster. Clearly Oracle 8 is performing’s sophisticated
processing to speed up these types of queries. However
the C implementation remains orders of magnitude faster,
reflecting the better evaluation algorithms.

2.2 Evaluation and Optimization of EMF Queries

In this section we present a direct implementation of ex-
tended multi-feature queries and optimizations of that im-
plementation. All aggregate functions are presumed to be
algebraic’. We start with two definitions.

Definition 2.1: A grouping variable Y dependson grouping
variable X, if some aggregate value of X appears in the defin-
ing condition of Y. This is denoted as Y + X. If the defining
condition of a grouping variable Y contains aggregates of the
group or grouping attributes, then the group is denoted as
a grouping variable X0 and we write Y + X0. The directed
acyclic graph that is formed from the grouping variables’
interdependencies is called emf-dependent y graph. 0

Definition 2.2: The output of a grouping variable X, de-
noted as outp(X)is the set of the aggregates of X that appear
in either the such that clause, the having clause, or the
select clause. 0

2.2.1 Evaluation

Let H be a special table, called the mf-structure of an ex-
tended multi-feature query, with the following structure. Each
row of H, called entry, corresponds to a group. The columns
consist of the value of the grouping attributes, the aggregates
of the group, and the aggregates of the grouping variables.
Let XI,... ,X, be the grouping variables of the query, or-
dered by a reverse topological sort of the emf-dependency

graph.
The algorithm [5] performs n + 1 scans of the base rela-

tion. On scan i it computes the aggregates of Xi grouping
variable (X0 denotes the group.) As a result, if Xj depends
on Xi (i.e. if aggregates of X; appear in the defining condi-
tion of Xj), this algorithm makes sure that X;‘s aggregates
will have been calculated before the jth scan. Note also
that given a tuple t on scan i, all entries of table H must
be examined, since t may belong to grouping variable Xi of
several groups, as in Example 2.2: a tuple t affects several
groups with respect to grouping variable Z, namely those
that agree on Product with t’s Product.

This algorithm represents an efficient, self-join free di-
rect implementation of the extended multi-feature syntax.
This is the main contribution of the extended multi-feature
syntax: complex decision support queries not only can be
expressed intuitively and declaratively, but also there exists
a direct mapping between the representation (syntax) and
an evaluation algorithm that guarantees the answer in few
scans of the base data.

2.2.2 Optimization

The EMF query evaluation algorithm in Section 2.2.1 is a
naive implementation - many optimizations can be made
(as is presented in length in [4, 51) that greatly improve
performance. For example, the evaluation can become very
expensive if the mf-structure has a large number of entries,
since on each scan, for every tuple, all H’s entries are exam-
ined, resulting in an implicit nested-loop join. However, this
is not necessary since one can identify, given a tuple t and a
grouping variable Xi, a small number of entries (i.e. groups)
that this tuple “affects”. Consider Example 2.2 and grouping
variable X. Given a tuple t, we know that only one entry
of the mf-structure will be affected during the evaluation of

lHolistic aggregates require additional memory management
considerations.

172

grouping variable X (the one that agrees on t’s Product,
Month values) because X denotes the group. As a result,
a tuple t can belong only to X of one group. Therefore,
only one entry is updated. The same holds for all grouping
variables of Example 2.1. A syntatic analysis shows which
indices on H should be built to accelerate the inner loop.

We note that while the evaluation algorithm is described
works in main-memory, extensions to out-of-core are possi-
ble. In [4] we describe a multi-pass algorithm based on an
automatic partitioning of the mf-structure. This algorithm,
and other optimizations, are implemented in the EMF SQL
prototype available at www.panakea.com.

3 Multiple Fact Tables

The expression and evalaution of nested aggregation requires
access to data from multiple sources. We find that extending
EMF SQL to access data from multiple sources to be of
independent interest. In many situations, the data to be
queried exists in several fact tables. Normally, querying these
tables requires one or more joins. However, most of these
queries express a type of looping that is similar to what is
discussed in the previous section:

For each value v of a set of attributes S from one base
table, select a subset of tuples from another table (perhaps
the same table). Then, using computed aggregates if needed,
select another subset of tuples from another table and so on.
Output aggregates of the selected subsets.

The EMF syntax for multiple fact tables has only one
small change. If a grouping variable ranges over a fact table
other than the first one specified in the from clause, then
the range of each grouping variable (i.e., the fact table that
the grouping variable scans) must also be specified, in paren-
theses. If no explicit range is given, then the range of the
grouping variable is the fact table in the from clause.

The evaluation of multi-fact table EMF queries is almost
the same as for single fact table queries. A pass is made
through a source fact table to build the mf-structure. Then
one pass is made through the a fact table for each grouping
variable. Let Xi be the grouping variable for the ith scan.
If Fange(x;) = Rk, then scan i is made over fact table &.
The optimizations previously developed [4] can be applied
with little change (see Section 5).

Lets consider an example query. Most of the remaining
examples in this paper will use the following tables:

Purchases(account,prod-cat,day,month,year,amount)
Calls(account,frmAC,frmTel,toAC,toTel,

day,month,year.length)
WebLog(account,webSite,type,day,month,year,ts,length)

Example 3.1: For 1997, for each customer, find the months
with average spending amount greater than the yearly aver-
age, and output the type of web-sites of each month that
had average length greater than the customer’s length of
that month.

Select account, month, type
From WebLog
Group By account,month,type ; X(Purchases),

Y (Purchases) ,Z, Q
Such That X.account=account and X.month=month,

Y.account=account,
Z.account=account and Z.month=month
and Z. type=type ,
Q.account=account and Q.month=month

Having avg (X. amount) >avg (Y. amount) and
avg(Z.length)>avg(Q.l.ength)

Expressing this query in SQL would require building four
temporary tables (corresponding to Q, X, Y, and Z) and a four-
way join to construct the output table. The query would be
difficult to express and understand, and slow to evaluate.

Let us consider another example, which integrates data
from two sources.

Example 3.2: Show the total amount of purchases, aver-
age length of calls, and average length of weblog for every
month and for every customer whose total length of weblog
is greater than or equal to their total length of cab.

Select account, month, sum(X. amount) ,
avg (Y . length) , avg (Z . length)

From Purchases
Group By account,month ; X,Y(Calls),Z(WebLog),

Q(Calls) , R(WebLog)
Such That X.account=account AND X.month=month,

Y. account=account AND Y .month = month,
Z. account=account AND Z.month = month,
Q. account=account ,
R. account=account

Having sum(Q.length)>sum(R.length)

A restriction of our syntax is that all group-by attributes
must be derived from a single table, eliminating the need to
perform a join in the initial step of building the mf-structure.
As the examples show, a large class of interesting queries
can be expressed with this restriction. For some queries,
the group-by attributes might need to be derived from more
than one table. Example 3.2 illustrates the point. It might
be the case that during some month, a customer makes no
purchases, but makes several web accesses.

Rather than making the EMF semantics more complex,
we assume that the user will pre-compute a table with the
group-by entries needed for a query. We feel that this pro-
cedure does not substantially add to the complexity of the
query, because the logic for computing the group-by entries
and the logic for computing the aggregates are separate.
Furthermore, the group-by table is likely to be computed
in many queries, and is a good candidate for materialization
anyway.

Evaluating multi-table EMF queries is as efficient as eval-
uating single-table EMF queries. In Example 3.2, six passes
are needed to compute the query using the basic algorithm.
However, this is only two passes through the entire data
set. Pass-reduction optimizations (i.e., none of the grouping
variable definitions depend on each other, see [4, 61) show
that only 1 pass through each fact table is required.

4 Multi-level Aggregation

Many data analyses require the use of complex, non-distri-
butive aggregation. In many cases, the aggregate is a rollup
aggregate (i.e., a summary of aggregates grouped by an addi-
tional dimension) One common example is the most-frequent
aggregate, which is a max of a count. Another closely related
query is, “For 1997, what are the total sales of each prod-
uct during the month with the maiimum total sales of the
product?“.

These aggregates can be phrased as nested aggregation,
which reflects their rollup nature. For the example query we
must first find the total sales of each product during each
month of 1997. Then for each product, we must find the
month with the maximum total sales. Notice that computing

173

nested aggregates requires that we specify nested levels of
group-by attributes. In this example, the per-month groups
are nested within the product groups.

We introduce some syntax to express nested aggregation
EMF queries. Informally, the extensions to the EMF syntax
are:

1. Group-by nesting is indicated by matching square braces.

2. The nested group-by attributes are indicated by a group-
by statement at the end of the nested aggregate state-
ment .

3. Grouping variables are listed after the group-by state-
ment of their associated nesting block.

4. Nested aggregates are referred to by multiple levels of
aggregation.

The definition of the group-by variables can make use of
the “visible” group-by attribute values of the group, and the
“visible” aggregates of previously defined grouping variables.
We defer the definition of “visible”, and present examples to

make the meaning intuitively clear.

Example 4.1: The motivating example can be expressed as
follows.

Select prod-cat, max(sum(X.amount))
From Purchases
Group By prod-cat
Such That [(X.prod-cat=prod-cat and X.month=month)

Group By month ; X3

The operation of this query can be visualized by the
example shown in Figure 1. We evaluate the query by build-
ing an mf-structure table with group-by attribute prod-cat.
Each mf-structure entry contains space for the aggregate
max(sum(X.amount)), and also a nested mf-structure with
group-by attribute month. and aggregate sum(X.amount).
We make a scan through the Purchases table to compute
the sum(X.amount), and then for every mf-structure entry,
make a scan through the nested mf-structure to compute
max(sum(X.amount)). We note the relationship between
the nested aggregation table and nested relations [ll] (which
motivates the name nested aggregation).

This model of a nested EMF-query is useful for gaining an
intuition about the semantics of query evaluation. When we
compute an aggregate of a grouping variable, we use EMF se-
mantics, but when we compute an aggregate of an aggregate
(a nested aggregate), we use MF semantics (i.e., each mf-
structure entry is isolated from the others). An mf-structure
entry can have more than one nested mf-structure, and the
nested mf-structure entries can also have nested mf-structure
entries. A nested mf-structure entry can “see” fields in its
parent (ancestor) mf-structure entry, but is isolated from
other nested mf-structure entries.

To simplify the presentation of the nested EMF query
evaluation algorithm, we keep the semantics that mf-structure
entries are single valued. We choose to use multiple mf-
structure to represent the nested mf-structure. However
other approaches are possible. One uses a single flat mf-
structure. We also note that it is possible, and perhaps
desirable, to develop an evaluation algorithm on the nested
EMF-table model.

In the multiple mf-structure approach, the fundamental
extension to the regular EMF query processing algorithm is

prod-cat maxbim(X.sales))

22

19

8

month sum(X.sales)
I

2 15

6 I 4

Figure 1: Nested aggregation with nested mf-structures.

pK&C~t max(sum(X.sales)) pmd-cat month sum(X.s&s)

shaes 22

socks 19

coats 8

hats 4

Figure 2: Evaluating a nested group-by query.

to use one table per nested group-by block, and a restricted
type of join between them. The mf-structure used in evalu-
ation of the example query is shown in Figure 2. The first
table (which contains the final answer) is grouped by prod-
cat and contains max(sum(X.amount)) summaries, while the
second table is grouped by prod-cat and month and contains
(sum(X.amount)) summaries. The second table is built using
the usual EMF algorithm, and then the first table is built
from summaries on the second.

The aggregates in a nested aggregation query can be any
commutative aggregates, including more complex ones such
as count-of-min(). More generally, we can use linked aggre-
gates. Let X and Y be two values defmed.at. a group-by nest-
ing level. Then, linked-aggr(X,,aggr(Y)) returns the value of
z in one of the entries of the nested mf-structure in which Y
has the value aggr(Y). The aggregate aggr(Y) must return a
value that Y actually takes (e.g., min, max, median, etc.). Be-
cause there might be several entries in which Y = aggr(Y),
the linked aggregate (e.g., any, first, last) defines which of
the entries supplies the value of Y. The quantity X can
be an aggregate value defined at the nested mf-structure, or
it can be one of the group-by attributes of the nested mf-
structure. For example, any(month, max(sum(X.amount)))
returns the month with the maximum amount. We note
that the quantity returned by a linked aggregate can be

174

computed without using a linked aggregate, but at the cost
of duplicating the nested aggregation block.

Example 4.2: For each credit, card customer, find the amount
spent in the maximum spending month, and that month.

Select account, year, max (sum (X. amount)) ,
any(month, max(sum(X.amount)))

From Purchases
Group By account, year
Such That [(X.account=account and X.year=year and

X.month = month) Group By month ; Xl

This query is evaluated in a manner similar to that of
the previous example. When the table grouped by (ac-
count, year) is built from the table grouped by (account,
year, month), the any aggregate is computed. The current
value of the max(sum(X.amount)) is stored, and whenever it
is updated, the month attribute is recorded.

The nested group-by EMF syntax can use aggregates of
previously defined grouping variables to define the range of
new grouping variables. The grouping variable can be de-
fined at a different level of aggregation. The following exam-
ple also uses a having clause at the lower level of aggregation.
The having clause selects the bottom level aggregates that
can be further aggregated in the top-level result (i.e., MF
semantics).

Example 4.3: For each credit card customer, find the months
of 1997 that have average spending amount greater than the
1997 yearly average, and output the minimum one for each
customer.

Select account, min(avg(Y.amount)),
any(month, min(avg(Y.amount)))

From Purchases
Group By account ; X
Such That (X.account=account and X.year=1997) ,

[(Y.account = account and Y.year = 1997 and
Y.month=month)
Having avg (Y . amount 1 > avg (X . amount 1
Group By month ; Y]

Figure 3 illustrates the query evaluation, which starts by
building two mf-structures, the first grouped by account, and
the second grouped by account and month. A pass is made
over the Purchases table to build the mf-structure entries.
Then a second pass is made over the Purchases table to
compute avg(X.amount), grouped by account. Because this
value is used in the nested group-by table, it is reflected
to the second table (the quantity avg(X.amount) is defined
at the parent mf-structure, and therefore is visible at the
child mf-structure). The reflection can be accomplished in
several different ways, but we will use the convention that a
tuple t from the Purchases table is applied to all entries in
both mf-structures that have a matching value of account. A
third pass is made over the Purchases table to compute the
avg(Y.amount). A fourth pass is made over the second mf-
structure to compute min(avg(Y.amount)) and any(month,
min(avg(Y.amount))) in the first mf-structure. Only those
entries in the second mf-structure that satisfy the having
clause are selected for use in the scan.

The above example illustrates two key ideas. First, all
computation is kept completely local. Because the
avg(X.amount) aggregate is reflected to the nested mf-struc-
ture, entries in the second mf-structure can be independently

Figure 3: Evaluating a nested group-by query with a having
clause.

evaluated for inclusion in the scan. Second, a having clause
at nested group-by becomes a such that clause when the
nested aggregate is computed. In general, nested aggre-
gates define implicit grouping variables that range over a
mf-structure. The having clause in a nested group-by block
lets us introduce multi-feature (though not extended multi-
feature) semantics. The group-by nesting can be extended
to multiple levels, as the following example shows.

Exampie 4.4: For each credit card customer, find the amount
spent in the minimum of the maximum-spending month in
any year.

Select account, min(max(sum(X.amount))) ,
first (year, max(sum(X. amount)) 1 ,
first (any(month, max(sum(X.amou.nt)) 1,
min(max(sum(X.amount)) 1 1

From Purchases
Group By account
Such That [I: X.account=account and X.year=year

and X.month = month; Group By month ; X 1
Group By year 1

This query is evaluated in the usual way, by using three
mf-structures. Finally, we show an example with multiple
hierarchies.

Example 4.5: For each customer, count the number of months
during which the customer makes a number of purchases
larger than the number of times that the customer has pur-
chased their most commonly purchased item.

From Purchases P
Select account, count (count (Y .account))
Group By account
Such That

[(X. account=account and X . prod-cat=prod-cat)
Group By prod-cat ; X]
[(Y.account=account and Y.month=month)
Group By month ; Y
Having count (Y. account) >max(count (X. account) 1]

In this query, count(X.account) counts the number of times
a customer has purchased a particular product. Therefore,

175

max(count(X.account)) is the number of times the customer
has purchased their most favorite product. count(Y.account)
is the number of purchases a customer has made in a particu-
lar month. We can determine if the customer has made a suf-
ficiently large number of purchases during a month by testing
count(Y.account) > max(count(X.account)). To count the
qualifying months for a customer, we evaluate count(count(
Y.account)).

The query is evaluated in a manner similar to the other
examples. Three mf-structures are used, the first grouped
by account, the second grouped by account, prod-cat, and the
third grouped by account, month. The max(count(X.account))
aggregate is reflected from the first mf-structure to the third

In order to precisely define the syntax and evaluation of
nested EMF queries, we need to make a number of defini-
tions. Unless otherwise stated, the syntax of nested EMF is
the same as EMF.

1.

2.

3.

4.

5.

6.

7.

8.

A group-by btock is indicated by a matching set of
square braces (except for the top level group-by block,
which is not enclosed by braces). Each group-by block
defines one of more grouping attributes, and zero or
more explicit grouping variables, and optionally con-
tains a having clause. The grouping variables defined
in the group-by block must be listed after the group-by
clause, using the usual EMF syntax.

Let n/ = {Ni, i = 0,. . . , n} to be the set of n + 1
different group-by blocks in a query. NO is the root
group-by block. The children of a group-by block N,
children(N), is the set of all group-by blocks directly
nested within N. We similarly define parent(N),
ancestors(N), and descendents(N).

The level of group-by block N, level(N), is the num-
ber of matching braces enclosing N. For example,
ZeveZ(No) = 0.

The group by attributes of a group-by block N, G(N)
is the set of attributes listed in the group-by clause of
N.

The group-by tag associated with a group-by block N,
tag(N) is defined by

Each block N has an mf-strucutre, mf(N). The group-
by attributes of mf(N) are tug(N).

A nested aggregate is an expression agg,(agg,-i (
. . .aggo(X). ..), w h ere each aggi is an aggregate func-
tion and n 2 1. A nested aggregate has subaggre-
gates, agg,-1 (. . . aggo (X) . . .) ,. . . , aggo (X). The child
of nested aggregate aggn (, , . aggo (X) . . .) ,, . . , aggr (X)
is agg,,-r(...aggo(X)...) ,..., aggr(X), and the child
of aggo(X) is X.

In the case of linked aggregates, the nested aggregates
form a tree in with branches at each linked aggregate.
A linked aggregate will have two children, correspond-
ing to both parameters. Note that the syntactic sugar
of linked aggregates requires that we strip off one level
of aggregation from the second parameter. One or both
of these children might be group-by attributes.

An explicit grouping variable is a named grouping vari-
able. The b/o& of an explicit grouping variable V,

9.

10.

11.

12.

13.

bloclc(V), is the nested group-by block in which V is de-
fined. For shorthand, we define tag(V) = tag(block(V))
and mf(V) = mf(block(V)). Also, we define mj(
aggr(V)) = mf(V) and bZock(aggr(V)) = block(V) for
each aggregate of V. The range of the explicit grouping
variable is a fact table.

The implicit grouping variables are defined implicitly
by subaggregates of nested aggregates. One implicit
grouping variable is defined for each unique subaggre-
gate of each nested aggregate. Let the block of the
explicit grouping variable X be N. The implicit group-
ing variable associated with aggo (X), V(aggo (X)), is
defined at parent(N), and ranges over mf(N) (i.e.,
range(V(aggo(X)) = mf(N)). If the implicit grouping
variable V(aggi-1 (. . aggo (X))) is defined at node N
then V(aggi(aggi-I(. . . aggo(X))) is defined at
parent(N), and ranges over mf(N).

In the case of linked aggregates, V(agg;(agg’, agg”))
is defined at parent(agg’) = porent(agg”), and ranges
over mf(agg’) = mf(agg”) (note that the syntactic
sugar of linked aggregates requires that we strip off
one level of aggregation from the second parameter).

As is the case with explicit grouping variables,
mf(aggr(V)) = mf(V) and bZock(aggr(V)) = block(V).

An explicit grouping variable depends on explicit group-
ing variables in its definition, and on the implicit group-
ing variables of the nested aggregates in its definition.
An implicit grouping variable depends on the grouping
variable(s) of its child nested aggregate(s), and on the
explicit and implicit grouping variables in the having
clause of its block. The dependence graph must be
acyclic.

A value of a group-by attribute a is visible at block N if
a E tag(N). An aggregate value aggr is visible at block
N if bZock(aggr) E NU ancestors(N). All groupby
attributes and aggregate values used as constants in the
such that or having clause in block N must be visible
at block N.

If an aggregate agg(V) of a grouping variable V defined
at block N is used in the definition of a such that or
having clause in a block N’ E descendent(N), then
agg(V) is reflected to N’.

The aggregates defmed at block N, AGG(N) is the set
of alI aggregates referenced in the query of the implicit
and explicit grouping variables defined at N, together
with the aggregates reflected to N.

Lets consider an example to illustrate these definitions.

Example 4.6: Let us recall example query 4.5. A diagram
of this query is shown in Figure 4. This query has three
group-by blocks: the top-level block NO, the block in which
X is defined Nr , and block in which Y is defined Nz. We see
that children(No) = descendent(No) = {Ni, Nz}, and that
parent = ancestor(N1) = parent(N2) = ancestor(&)
= {No}. The level of NO is 0, while the level of Nr and
Nz is 1. The group-by attributes of the blocks are G(No) =
{account}, G(Nl) = {prod -cat}, and G(Ns) = {month}.
The tags associated with the blocks (and therefore with their
mf-structures) are tags(No) = {account}, tags(N1) =
{account, prod - cat}, and tags(Nz) = {account, month}.

176

Figure 4: Analysis of nested aggregate query example 4.5.

There are two nested aggregates in the query. The nested
aggregate count(count(Y.account)) contains one level of nest-
ing, and therefore contains one subaggregate count(Y.account).
This subaggregate generates an implicit random variable ZI
which is defined at NO and which ranges over N2. The
nested aggregate max(count(X.account)) also contains one
level of nesting, and therefore contains one subaggregate
count(X.account). This subaggregate generates an implicit
random variable Zz which is defined at NO and which ranges
over NI. The explicit grouping variables have no depen-
dencies (we show a dependence on the initial pass, Xo that
builds the mf-structures, but actually X and Y are pass-
reducible to X0). Th e implicit grouping variable Z2 depends
on X, and the implicit grouping variable Z1 depends on Y
and on Z2. Note that the aggregate max(count(X.account)) is
defined at No, but is reflected at Nz. Therefore, AGG(No) =
{count(count(Y.account)), max(count(X.account))},
AGG(N1) = {count(X.account)}, and AGG(N2) =
{count(Y.account), max(count(X.account))}. 0

The extension to the evaluation algorithm required to
handle nested group-by aggregation is to handle reflected
aggregates. This requires that during a scan we apply tuples
to all of the relevant mf-structures.

Algorithm 4.1: Evaluation of nested EMF queries:

1) Enumerate the grouping variables by a
topological sort.
2) Stage 0 makes a pass through the fact. table to
build all of the mf-structures. Let there be k
blocks, No,. . . , N.+-l . For every tuple t encountered

a) for i = 0 through k - 1
i) if t[tags(ZV;)] does not exist in mf(Ni),
create an entry in mf(N;) with key t[tags(Ni)],
and initialize the aggregates AGG(Ni).

3) Let there be k group-by variables X1 . . . , Xk.,
enumerated in the order of a topological sort on
the dependences.
4) for each group-by variable Xi execute stage i.

a) Make a scan through the mf-structure range(X,).
For every tuple t, apply t to every mf-structure
mf(N) such that there is an aggregate
agg(Xi) E AGG(N).

Example 4.7: Let us examine how example query 4.5 would
be evaluated. A first pass is made through the Purchases ta-
ble to construct the mf-structure entries for each of mf(No),
mf(Nl), and mf(Nz). Let us suppose that the topologi-
cal sort of the implicit and explicit grouping variables on
their dependences is (X, Y, 22, ZL). A second pass is made
through the Purchases table to evaluate aggregates of X.
Since aggregates of X only occur in AGG(Nl), only mf(N~)
is updated. A third pass is made through the Purchases
table for grouping variable Y, and only mf(N~) is updated.
A pass is made through mf(N1) to evaluate aggregates of
22, which is defined at NO but has an aggregate reflected to
N2. So, both mf(No) and mf(Nz) are updated. Finally, a
pass is made through mf(Nz) to evaluate aggregates of 21,
and only mf(No) is updated.

An alternative query evaluation algorithm that uses a
single table can be developed. The idea is to “flatten” the
k mf-structures into a single table. The group-by key for
the flattened mf-structure is UNG(N). A group-by block N’
is represented by the mf-structure entries with valid values
in tag(N’) and null values in UNG(N) - tag(N’). Every
implicit and explicit grouping variable is defined on the mf-
structure, and the range of every implicit grouping variable
is the mf-structure. One nice aspect of this approach is that
reflection occurs automatically.

An extension to the nested EMF syntax allows nested
group-by blocks to be named, and explicit grouping variables
to range over the named group-by blocks. This extension
can eliminate the need for linked aggregates, and can permit
certain queries to be expressed more concisely. Space con-
straints prevent an in-depth discussion. We note that the
analysis and evaluation of the extended syntax is almost the
same as the basic nested EMF syntax that wz have presented.

5 Optimizations

Because the query evaluation algorithm for the nested and
multi-table EMF syntax is almost identical to the regular
EMF query evaluation algorithm, the optimizations that have
been developed for EMF queries can be carried over to this
new setting with few or no modifications. In this section, we
discuss previously proposed optimizations, and also several
new issues.

Relative Entries With EMF semantics, a tuple from the
fact table can be applied to several mf-structure entries (which
is why EMF is so expressive). The basic EMF query evalu-
ation algorithm must test every mf-structure entry for every
fact table tuple on every pass to determine if the tuple is
a member of a grouping variable for that mf-structure en-
try. However, the such that clause usually places significant
restrictions on the range of the grouping variables. These
restrictions are formalized as relative sets in [4], and can be
used to define indices on the mf-structure.

The definitions of relative sets of the explicit grouping
variables are unaffected by the extensions to EMF proposed
in this paper. The implicit grouping variables have MF
semantics, so a tuple referenced by an implicit grouping
variable is applied to only one parent mf-structure entry
(which can be found by hashing).

Dependency Analysis The basic EMF query evaluation
algorithm makes a pass through the fact table for each group-
ing variable. The number of passes can be reduced by com-
puting aggregates of several grouping variables at the same

177

time. The grouping variables that can be processed together
can be determined by an analysis of the dependency graph.
If the grouping variables preceding X and Y have already
been processed, then on the next scan aggregates of both X
and Y can be computed.

For the extensions presented in this paper, we need to
make the additional requirement that range(X) = range(Y)
in order to apply the optimization. If range(X) # range(Y),
then aggregates of X and Y can be computed in parallel.
This optimization is particularly effective if X and Y affect
non-overlapping mf-structures. We note that our analysis of
nested EMF queries are likely to lead to a large number of
implicit grouping variables. By using this optimization, they
will all be processed in a few passes (perhaps one) over the
nested mf-structure.

Parallel Search Since each mf-structure entry is processed
in isolation, the mf-structure can be partitioned and dis-
tributed to multiple processors, and a pass over a fact table
can be performed in parallel. Because nested mf-structures
are “contained’ in mf-structure entries, the root mf-structure
partition also defines partitions of the nested mf-structures.
Passes over the nested mf-structures can be performed in
parallel with no communication between processors.

Out-of-core Processing If the mf-structure does not fit
into memory, it can be partitioned (as discussed above) and
processed in a partition-wise manner, with only the current
partition being main-memory resident.

With nested EMF queries, we can make another opti-
mization that trades memory for additional table scans. We
observe that a nested mf-structure MF(N) can be deleted
once the last grouping variable whose range is N has been
processed. Further, MF(N’) does not need to be constructed
until the first grouping variable defined at N’ is processed. If
all grouping variables whose range is N can processed before
all grouping variables defined at N’, then after processing
the last grouping variable whose range is N, we can delete
N and reuse its space to construct N’. For an example, this
optimization would work on Example 4.5. Another possible
optimization is to bring into active memory only the mf-
structures being referenced by the current grouping variable.

6 Previous Work

Several papers discuss query optimization techniques in the
context of standard SQL that are particularly applicable in
the processing of complex OLAP queries. Graefe surveys
various principles and techniques [13]. The issues of ag-
gregation and join have been studied separately until quite
recently, when a number of papers on optimization of both
aggregation and join have appeared [30, 91. Yan and Larson
in [30] describe a class of transformations that allow the
query optimizer to push a group-by past a join (eager aggre-
gation) or pull a group-by above a join (lazy aggregation).
In a similar direction, Chaudburi and Shim in [9] present
a similar class of pull-up and push-down transformations.
Furthermore, they incorporate these transformations in op-
timizers and propose a cost-based optimization algorithm to
pick a plan.

Although these techniques may speed up complex aggre-
gate processing, they fail to recognize the redundancy incor-
porated in the SQL expressions of complex OLAP queries:
frequently these queries are expressed as multiple joins and
aggregations, but can be evaluated much simpler. Chatzianto-
niou and Ross in [8] observed that many common decision

support queries, called group queries, can be processed group-
wise, i.e. the base relations can be partitioned and processed
in a group-by-group fashion, although their expression in
SQL involves several joins.

However, there exist OLAP queries that are not group
queries. Extended syntaxes, aiming to succinctness, try to
deal with inadequate optimization techniques. Succinctness
means that the users can write and understand queries easier,
and the system can optimize them better since there is a tight
coupling between representation and evaluation.

Several authors have pointed out that SQL cannot sim-
ply express a number of queries involving grouping and ag-
gregation [14, 201 Gray, Bosworth, Layman and Pirahesh
propose a relational aggregation operator, called datacube,
which is useful in data analysis applications [14]. QUEL [28]
allows queries in which the range of tuples over which an
aggregate is computed can be specified. Kimball and Streblo
in [20] argued that SQL should be extended in order to be
more powerful (in both syntax and performance) for queries
related to grouping. They propose a new keyword, called
ALTERNATE, which is associated with a constraint. This
constraint replaces all constraints on the same table in the
surrounding query.

Our syntax can neatly solve (for a known number of
columns) the so-called ualzre-to-attribvteconflict or pivoting,
a case of schematic discrepancies in interoperable databases.
This conflict occurs when the same information is expressed
as values in one table and as attributes in another [19, 211.

7 Conclusions

Complex data analysis on very large data warehouses require
an advanced querying tool. One particular limitation of
existing OLAP databases is their ability to express complex
aggregates. In object-relational databases, the user can in-
troduce UDAFs to compute arbitrary aggregates. However,
defining UDAFs places a significant programming burden on
the user. In addition, UDAFs are difficult to optimize.

In previous papers, we have introduced the Extended
Multi-Feature syntax, which is a small extension to SQL.
EMF SQL can express many complex aggregation queries in
a simple and succinct manner. Examples include percent-of-
total, moving-average, or median aggregates, and pivoting
queries. In addition, the queries can be evaluated using an
efficient query processing algorithm that is closely tied to the
EMF syntax.

In this paper, we demonstrate that two major extensions
to EMF-SQL can be accomplished with minor adjustments
to the EMF-SQL syntax and evaluation algorithm. The
primary extension is to allow the declarative expression of
complex non-distributive aggregates through nested aggrega-
tion, or aggregation over an aggregated table. An example
of a nested aggregate is a most-frequent aggregate, i.e. max
of count. Very complex nested aggregation queries can be
expressed simply and succinctly, and evaluated efficiently.
The second extension is to allow the grouping variables to
range over multiple fact tables. This extension lets us apply
the power of EMF to the problem of integrating data from
multiple sources.

References

[l] S. Agarwal, R. Agrawal, P. Deshpande, A. Gupta, J. F.
Naughton, R. Ramakrishnan, and S. Sarawagi. On the
computation of multidimensional aggregates. In %?nd
VLDB Conference, pages 505-521, 1996.

178

PI

[31

141

PI

[cl

VI

PI

PI

PO1

[ill

Cl21

PI

[I41

P51

PI

[171

P31

P91

PO1

w

WI

R. Agrawal, A. Gupta, and S. Sarawagi. Modeling
multidimensional databases. In IEEE International
Conference on Data Engineering, 1997.
D. Chamberlin. Using the New DB2. Morgan Kaufman,
1996.
D. Chatziantoniou. Ad-Hoc OLAP : Expression and
Evaluation. In International Conference on Data En-
gineering (ICDE) - to appear, March 1999. See also
www.cs.stevens-tech.edu/ damianos.
D. Chatziantoniou. Evaluation of ad-hoc OLAP: In-
place computation. In Proc. 11th I&. Conf. Scien-
tific and Statistical Database Management, pages 34-43,
1999.
D. Chatziantoniou and T. Johnson. Decision support
queries on a tape-resident data warehouse. IEEE Com-
puter (to appear).
D. Chatziantoniou and K. Ross. Querying multiple
features of groups in relational databases. In 22nd
VLDB Conference, pages 295-306, 1996.
D. Chatziantoniou and K. Ross. Groupwise processing
of relational queries. In 23rd VLDB Conference, 1997.
S. Chaudhuri and K. Shim. Including group-by in query
optimization. In VLDB Conference, pages 354-366,
1994.
M. Corp. OLE DB for OLAP design specifications -
beta 2.
http://www.microsoft.com/fata/oledb/olap/prodinfo.html.
R. Elmasri and S. Navathe. Fundamentals of Database
Systems. Addison-Wesley, 1994.
F. Gingras and L. Lakshmanan. nD-SQL: A
multi-dimensional language for interoperperability and
OLAP. In Proc. 24th Intl. Conf. on Very Large Data
Bases, pages 135-145, 1998.
G. Graefe. Query evaluation techniques for large
databases. ACM Computing Surveys, 25(2):73-170,
1993.
J. Gray, A. Bosworth, A. Layman, and P. H. Datacube
: A relational aggregation operator generalizing group-
by, cross-tab, and sub-totals. In IEEE International
Conference on Data Engineering, pages 152-159, 1996.
M. Gyssens and L. Lakshmanan. A foundation for
multi-dimensional databases. In Proceedings of the 2&d
VLDB Conference, pages 106-115, 1997.
Illustra Information Technologies. Illustra User’s Guide.
1995.
M. Jaedicke and B. Mitschang. On parallel processing
of aggregate and scalar functions in object-relations1
dbms. In Proc. ACM SIGMOD Conference, pages 379-
389, 1998.
S. Johnson and D. Chatziantoniou. Extended sql for
manipulating clinical warehouse data. In American
Medical Informatics Association, 1999.
W. Kim and J. Seo. Classifying schematic and data het-
erogeneity in multidatabase systems. IEEE Computer,
24(12):12-18, 1991.
R. Kimball and K. Strehlo. Why decision support fails
and how to fix it. SIGMOD RECORD, 24(3):92-97,
1995.
R. Krishnamurthy, W. Litwin, and W. Kent. Language
features for interoperability of databases with schematic
discrepancies. In ACM SIGMOD, Conference on Man-
agement of Data, pages 40-49, 1991.
C. Li and S. W. Wang. A data model for supporting on-
line analytical processing. In to appear in International
Conference on Information and Knowledge Manage-
ment, pages 81-88, 1996.

P31

1241

P51

P61

P71

[W

P91

[301

[311

J. Patel, J. Yu, N. Kabra, K. T&e, B. Nag, J. Burger,
N. Hall, K. Ramasamy, R. Lueder, C. Ellman, J. Kup
sch, and D. Dewitt. Building a scalable geospatial
database system: Technology, implementation, and
evaluation. In ACM SIGMOD, pages 336-347, 1997.
C. Red Brick Systems, Los Gatos. RISQL Reference
Guide, Red Brick Warehouse VPT Version 3. 1994.
S. Sarawagi, S. Thomas, and R. Agrawal. Integrating
association rule mining with relational database sys-
tems: Alternatives and implications. In Proc. of the
ACM SIGMOD Conf., pages 343-354, 1998.
P. Seshadri, H. Pirahesh, and T. C. Leung. Complex
query decorrelation. In International Conference of
Data Engineering, pages 450-458, 1996.
A. Shatdal and J. F. Naughton. Adaptive parallel
aggregation algorithms. In ACM SIGMOD, Conference
on Management of Data, pages 104-114, 1995.
M. Stonbraker, E. Wong, P. Kreps, and G. Held. The
design and implementation of INGRES. ACM Trans.
on Database Systems, 1(3):189-222, 1975.
M. Stonebraker and D. Moore. Object-Relational
DBMSs - The Next Great Wave. Morgan Kaufman,
1996.
W. P. Yan and P.-A. Larson. Eager aggregation and
lazy aggregation. In VLDB Conference, pages 345-357,
1995.
Y. Zhao, P. Deshpande, J. Naughton, and A. Shukla.
Simultaneous optimization and evaluation of multiple
dimensional queries. In ACM SIGMOD, Conference on
Management of Data (to appear), 1998.

179

