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Abstract 

Large scale data analysis and mining activities require so- 
phisticated information extraction queries. Many queries 
require complex aggregation, and many of these aggregates 
are non-distributive. Conventional solutions to this problem 
involve defining User Defined Aggregate Functions (UDAFs). 
However, the use of UDAFs entails several problems. Defin- 
ing a new UDAF can be a significant burden for the user, 
and optimizing queries involving UDAFs is difficult because 
of the “black boxn nature of the UDAF. 

In this paper, we present a method for expressing nested 
aggregates in a declarative way. A nested aggregate, which is 
a rollup of another aggregated value, expresses a wide range 
of useful non-distributive aggregation. For example, most 
frequent type aggregation can be naturally expressed using 
nested aggregation, e.g. “For each product, report its total 
sales during the month with the largest total safes of the 
product”. By expressing complex aggregates declaratively, 
we relieve the user of the burden of defining UDAFs, and 
allow the evaluation of the complex aggregates to be opti- 
mized. 

We use the Extended Multi-Feature (EMF) syntax as the 
basis for expressing nested aggregation. An advantage of 
this approach is that EMF SQL can already express a wide 
range of complex aggregation in a succinct way, and EMF 
SQL is easily optimized into efficient query plans. We show 
that nested aggregation queries can be evaluated efficiently 
by using a small extension to the EMF SQL query evaluation 
algorithm. A side effect of this extension is to extend EMF 
SQL to permit complex aggregation of data from multiple 
sources. 

1 Introduction 

The growing use of data warehouses has pointed out the 
need for query languages and tools that are more sophis- 
ticated than standard SQL on relational databases. Re- 
cent research has developed some approaches for these lan- 
guages and tools. Gray, Bosworth, Layman, and Pirahesh 
[14] have proposed the Cube operator. Sarawagi, Thomas, 
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and Agrawal [25] show how frequent sets can be computed 
by generating SQL queries. Gingras and Lakshmanan [12] 
propose an algebra which allows complex data restructuring 
and aggregation at multiple granularities. Microsoft Corpo- 
ration is developing MDX (MultiDimensional expressions), 
a language for making multiple OLAP queries [lo]. 

On-line analytical processing has attracted a lot of atten- 
tion recently because large enterprises want to analyze the 
warehouses of their collected data. Although there exists 
literature on modeling and conceptualizing OLAP [15, 2, 221, 
research has been mainly focused on expression, evaluation, 
maintenance, and usage of datacubes [14, 11. The processing 
and optimization of complex ad-hoc OLAP queries has been 
given little attention [31,8], although certain query process- 
ing techniques may be applicable [9, 261. Better evaluation 
of these queries is the motivation of several SQL syntactic 
extensions proposed in the past [20, 24, 71. 

A number of commercial vendors, such as COGNOS, 
Business Objects, Hyperion (Essbase), and Oracle Express, 
provide multidimensional data analysis and OLAP tools. 
Most of these systems have their own query language, not 
based on SQL. Some require data to be stored in their pro- 
prietary storage format (e.g. ESSBASE), while others either 
utilize standard database systems (e.g. Business Objects) 
or first extract the data to flat fIe format and then process 
them. While these products provide a suite of multidimen- 
sional data analysis tools (rollup, drill down, slicing, dicing, 
etc.), they do not provide facilities for the complex ad-hoc 
OLAP queries that are the subject of this paper. 

Conventional aggregate functions (e.g., min, max, count, 
sum, etc.) have the property of being distributioe - that is, 
it is easy to combine subtotals into grand totals. While this 
property of the aggregate functions enables their efficient 
computation [13, 271, often the user desires a more com- 
plex aggregate. Examples include percent-of-total, moving- 
average, most-frequent, and median [14, 171. However, these 
aggregates may be difficult to compute. For example, most- 
frequent and median are holistic (summing parts into a grand 
total requires unbounded temporary storage) [14]. 

The conventional solution to providing new complex ag- 
gregates for a query is to define a User Defined Aggregate 
Function (UDAF) m an object-relational DBMS [17, 3, 161. 
The user supplies modules that initialize an aggregate, add a 
tuple to it, and compute a final value. For optimization [23, 
291, the user registers information about the aggregate that 
can be used by the optimizer. To allow parallelism, the user 
must supply additional modules and registration information 
[17, 231. 

Our recent work on the Extended Multi-Featured syntax 
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(EMF SQL) is motivated by the desire to express a wide 
range of complex aggregates in a succinct and declarative 
manner. We had found that users of data warehouses (at 
AT&T, and at a medical school [18]) were frequently unable 
to express their complex aggregation queries in SQL. An- 
swering these queries required the help of a database admin- 
istrator to write the complex, slow (and frequently buggy) 
SQL or procedural code. As a result, these queries are 
usually answered late, or not at all. 

The EMF syntax allows a very precise control over the 
range of tuples used to compute an aggregate. As a re- 
sult, complex aggregates including percent-of-total, moving- 
average, or median can be easily expressed, modified, and 
generalized without resorting to UDAFs. We present some 
examples in Section 2 (examples 2.1 and 2.2 appear in 
[IS]). EMF SQL has an efficient evaluation algorithm, and 
many automatic optimizations, including parallelization, are 
possible. 

The major focus of this paper is to introduce an exten- 
sion to the EMF SQL syntax that allows the expression of 
complex non-distributive aggregates in a declarative manner 
using standard aggregates built into SQL (plus one addi- 
tional aggregate). The idea is to use nested aggregation, 
i.e. aggregation over aggregated quantities. This extension 
allows the expression of a subset of holistic aggregates, e.g. 
those that can be expressed as rollups of other aggregates. 
One example of this type of aggregate is the most-frequent 
aggregate, which is the max of a count. Nested aggregation 
allows the user to express generalizations of this type of 
query, for example “For each product, what is the maximum 
of the average monthly sales, during 1997”. A wide range of 
other queries can be expressed as well, and we provide some 
examples. 

Evaluating nested aggregates requires access to multiple 
data sources. We expand on this idea to allow EMF queries 
access to multiple fact tables. The modifications to the 
EMF syntax and evaluation algorithm are minor, but they 
permit the expression of aggregation queries that range over 
multiple data sources. We give several examples of this type 
of query. 

We show that the evaluation of nested EMF queries can 
be performed by a small extension to the evaluation algo- 
rithm for EMF queries over multiple fact tables. Because 
the efficient EMF query evaluation algorithm can be applied 
with only a few modifications, the query optimizations that 
we developed in previous work (including scalable evaluation 
and parallelization) can be applied. We also present some 
optimizations that can be made for the new extensions. 

In Section 2, we present the EMF syntax and evaluation 
algorithm for background. In Section 3, we show how to 
extend the EMF syntax to express queries over multiple 
fact tables. In Section 4, we discuss nested aggregation. In 
Section 5, we discuss query plan optimizations. Finally, in 
Section 7 we conclude. 

2 Extended Multi-Feature Syntax 

In previous works [4, 61 we have developed the Extended 
Multi-Feature syntax (EMF SQL). Because the material in 
this paper is phrased in terms of EMF SQL, we review it in 
this section. 

We have found that ad-hoc decision support queries present 
two key features that can be exploited either in developing 
query optimization techniques, or in equipping a language 
with appropriate syntactic extensions: 

First, OLAP queries group the relation(s) on a set 
of attributes and perform some complex (or simple) 
operation within each group. Although SQL handles 
simple operations within each group well (e.g. compute 
avg (salary) ), it requires a high degree of redundancy 
(joins, correlated subqueries) to express more complex 
operations within each group. This has been addressed 
in [7, 81. 

Second, OLAP queries may correlate results of group- 
ings on di%ferent sets of attributes. These sets are 
usually related somehow (e.g. the one is subset of the 
other.) 

The extended multi-feature syntax, a minor syntactic 
extension of SQL, addresses both of these issues and is a 
generalization of the multi-feature syntax discussed in [7]. A 
brief discussion of EMF SQL follows. 

2.1 Extended Multi-Feature Queries 

The idea behind the extended multifeature syntax [4] is sim- 
ple. For each group, the user defines one or more grouping 
variables. Each grouping variable represents a subset of 
the entire relation, whose range is constrained by the such 
that clause. The defining condition of a grouping variable 
may contain comparisons between ordinary attributes and 
constants, aggregates of the group, and aggregates of pre- 
viously defined grouping variables. As a result, one may 
define a series of selections and aggregations over the same 
grouping attributes. The group itself can be considered as 
one grouping variable, denoted as X0. Aggregates of the 
grouping variables can appear in the select clause. For a 
more formal definition of EMF-SQL, see [53. 

This small extension to SQL allows the user to express 
a large class of decision support queries in a simple and 
declarative fashion. This is mainly achieved because the 
group by clause acts as an implicit iterator over groups, the 
same way the from clause acts for the tuples of a relation. 
At the same time, grouping variables define the processing 
to be done for each value of the grouping attributes. This 
syntax also contributes to the second characteristic of OLAP 
queries, identified at the begin of Section 2. 

2.1.1 Examples 

Example 2.1: Suppose that We want to compute for each 
customer the average sale amount in “NY”, in “NJ” and in 
“CT” (the tri-state area). This query pivots a portion of the 
state column and creates columns. Its expression in EMF 
SQL is: 

Select cust, avg(x.amount),avg(y.amount), 
avg(z.amount) 

From Sales 
Where year=1997 
Group By cust ; x,y,z 
Such That x.cust=cust and x.state='NY', 

y.cust=cust and y,state=‘CT’, 
z.cust=cust and z.state=‘NJ’ 

Example 2.2: Suppose that one wants to determine, for 
each product, by which month had half of the 1998 yearly 
sales occurred. Here we need to compute a generalized me- 
dian. This query can be expressed using the extended multi- 
feature syntax as [18]: 



select Product, Month 
from Sales 
Where Year = 1998 
Group By Product, Month ; X, Y, 2 
Such That (X.Product=Product and X.Month=Month), 

(Y.Product=Product and Y.Month<Month), 
(Z.Product=Product) 

Having sum(Y.amount) < sum(Z.amount)/2 AND 
sum(Y.amount)+sum(X.amount) >= snllI(Z.amount)/2 

The Sales relation is grouped by Product, Month. The 
grouping variable X denotes sales of the Product during 
the Month, Y denotes sales of the Product during previous 
Months, and 2 represents sales during the entire year. The 
having clause selects for output only those months whose 
sales straddle the half-way mark of the yearly sales. Note 
that grouping variables Y and Z contain tuples that are not 
in the group. 

This query shows how many other complex aggregates 
can be computed. If we were interested in the number of 
sales, as opposed to their dollar quantity, we would use 
count aggregates instead of sum aggregates. The quantity 
sum(X.sales)/sum(Z. so es is a percent-of-total aggregates. 1 ) 
The grouping variable Y represents a running sum. With 
an additional constraint (e.g., Y.Month > Month - 3), it 
represents a moving window (e.g., for a moving average). 0 

Example 2.3: Assume that we are interested to find for 
each product the average quantity sold before and after each 
month of 1997 (a generalization of a moving-average aggre- 
gate). 

Select Product, Month, avg(X.quantity) , 
avg (Y. quantItyI 

From Sales 
Where Year=‘1997’ 
Group By Product, Month ; X, Y 
Such That (X.Product=Product and X.Month < Month), 

(Y.Product=Product and Y,Month > Month) 

For each product and month of “1997” we define two sets, X 
and Y. X contains all the sales of the current group’s prod- 
uct before the current group’s month (X. Month < Month) and 
Y the sales of that product after that month (Y .Month > 
Month.) 0 

2.1.2 Performance 

As is reported in [4, 51, we wrote a translator that generates 
C or PL/SQL code from an EMF query. We wrote SQL 
and EMF queries for Examples 2.1 and 2.3, and generated 
PL/SQL and C programs from the EMF queries. We used an 
Oracle 7 database to execute the SQL and PL/SQL queries. 
In spite of the high overhead required to execute a PL/SQL 
program, these versions of the queries are substantially faster 
than the SQL versions. When implemented in C, the queries 
execute two orders of magnitude faster. 

We also ran experiments with Oracle 8. We found that 
the first time we executed a query, the query execution time 
is similar to that achieved by Oracle 7. However on sub- 
sequent executions, the query was evaluated two to three 
times faster. Clearly Oracle 8 is performing’s sophisticated 
processing to speed up these types of queries. However 
the C implementation remains orders of magnitude faster, 
reflecting the better evaluation algorithms. 

2.2 Evaluation and Optimization of EMF Queries 

In this section we present a direct implementation of ex- 
tended multi-feature queries and optimizations of that im- 
plementation. All aggregate functions are presumed to be 
algebraic’. We start with two definitions. 

Definition 2.1: A grouping variable Y dependson grouping 
variable X, if some aggregate value of X appears in the defin- 
ing condition of Y. This is denoted as Y + X. If the defining 
condition of a grouping variable Y contains aggregates of the 
group or grouping attributes, then the group is denoted as 
a grouping variable X0 and we write Y + X0. The directed 
acyclic graph that is formed from the grouping variables’ 
interdependencies is called emf-dependent y graph. 0 

Definition 2.2: The output of a grouping variable X, de- 
noted as outp(X)is the set of the aggregates of X that appear 
in either the such that clause, the having clause, or the 
select clause. 0 

2.2.1 Evaluation 

Let H be a special table, called the mf-structure of an ex- 
tended multi-feature query, with the following structure. Each 
row of H, called entry, corresponds to a group. The columns 
consist of the value of the grouping attributes, the aggregates 
of the group, and the aggregates of the grouping variables. 
Let XI,... ,X, be the grouping variables of the query, or- 
dered by a reverse topological sort of the emf-dependency 

graph. 
The algorithm [5] performs n + 1 scans of the base rela- 

tion. On scan i it computes the aggregates of Xi grouping 
variable (X0 denotes the group.) As a result, if Xj depends 
on Xi (i.e. if aggregates of X; appear in the defining condi- 
tion of Xj), this algorithm makes sure that X;‘s aggregates 
will have been calculated before the jth scan. Note also 
that given a tuple t on scan i, all entries of table H must 
be examined, since t may belong to grouping variable Xi of 
several groups, as in Example 2.2: a tuple t affects several 
groups with respect to grouping variable Z, namely those 
that agree on Product with t’s Product. 

This algorithm represents an efficient, self-join free di- 
rect implementation of the extended multi-feature syntax. 
This is the main contribution of the extended multi-feature 
syntax: complex decision support queries not only can be 
expressed intuitively and declaratively, but also there exists 
a direct mapping between the representation (syntax) and 
an evaluation algorithm that guarantees the answer in few 
scans of the base data. 

2.2.2 Optimization 

The EMF query evaluation algorithm in Section 2.2.1 is a 
naive implementation - many optimizations can be made 
(as is presented in length in [4, 51) that greatly improve 
performance. For example, the evaluation can become very 
expensive if the mf-structure has a large number of entries, 
since on each scan, for every tuple, all H’s entries are exam- 
ined, resulting in an implicit nested-loop join. However, this 
is not necessary since one can identify, given a tuple t and a 
grouping variable Xi, a small number of entries (i.e. groups) 
that this tuple “affects”. Consider Example 2.2 and grouping 
variable X. Given a tuple t, we know that only one entry 
of the mf-structure will be affected during the evaluation of 

lHolistic aggregates require additional memory management 
considerations. 
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grouping variable X (the one that agrees on t’s Product, 
Month values) because X denotes the group. As a result, 
a tuple t can belong only to X of one group. Therefore, 
only one entry is updated. The same holds for all grouping 
variables of Example 2.1. A syntatic analysis shows which 
indices on H should be built to accelerate the inner loop. 

We note that while the evaluation algorithm is described 
works in main-memory, extensions to out-of-core are possi- 
ble. In [4] we describe a multi-pass algorithm based on an 
automatic partitioning of the mf-structure. This algorithm, 
and other optimizations, are implemented in the EMF SQL 
prototype available at www.panakea.com. 

3 Multiple Fact Tables 

The expression and evalaution of nested aggregation requires 
access to data from multiple sources. We find that extending 
EMF SQL to access data from multiple sources to be of 
independent interest. In many situations, the data to be 
queried exists in several fact tables. Normally, querying these 
tables requires one or more joins. However, most of these 
queries express a type of looping that is similar to what is 
discussed in the previous section: 

For each value v of a set of attributes S from one base 
table, select a subset of tuples from another table (perhaps 
the same table). Then, using computed aggregates if needed, 
select another subset of tuples from another table and so on. 
Output aggregates of the selected subsets. 

The EMF syntax for multiple fact tables has only one 
small change. If a grouping variable ranges over a fact table 
other than the first one specified in the from clause, then 
the range of each grouping variable (i.e., the fact table that 
the grouping variable scans) must also be specified, in paren- 
theses. If no explicit range is given, then the range of the 
grouping variable is the fact table in the from clause. 

The evaluation of multi-fact table EMF queries is almost 
the same as for single fact table queries. A pass is made 
through a source fact table to build the mf-structure. Then 
one pass is made through the a fact table for each grouping 
variable. Let Xi be the grouping variable for the ith scan. 
If Fange(x;) = Rk, then scan i is made over fact table &. 
The optimizations previously developed [4] can be applied 
with little change (see Section 5). 

Lets consider an example query. Most of the remaining 
examples in this paper will use the following tables: 

Purchases(account,prod-cat,day,month,year,amount) 
Calls(account,frmAC,frmTel,toAC,toTel, 

day,month,year.length) 
WebLog(account,webSite,type,day,month,year,ts,length) 

Example 3.1: For 1997, for each customer, find the months 
with average spending amount greater than the yearly aver- 
age, and output the type of web-sites of each month that 
had average length greater than the customer’s length of 
that month. 

Select account, month, type 
From WebLog 
Group By account,month,type ; X(Purchases), 

Y (Purchases) ,Z, Q 
Such That X.account=account and X.month=month, 

Y.account=account, 
Z.account=account and Z.month=month 
and Z. type=type , 
Q.account=account and Q.month=month 

Having avg (X. amount) >avg (Y. amount) and 
avg(Z.length)>avg(Q.l.ength) 

Expressing this query in SQL would require building four 
temporary tables (corresponding to Q, X, Y, and Z) and a four- 
way join to construct the output table. The query would be 
difficult to express and understand, and slow to evaluate. 

Let us consider another example, which integrates data 
from two sources. 

Example 3.2: Show the total amount of purchases, aver- 
age length of calls, and average length of weblog for every 
month and for every customer whose total length of weblog 
is greater than or equal to their total length of cab. 

Select account, month, sum(X. amount) , 
avg (Y . length) , avg (Z . length) 

From Purchases 
Group By account,month ; X,Y(Calls),Z(WebLog), 

Q(Calls) , R(WebLog) 
Such That X.account=account AND X.month=month, 

Y. account=account AND Y .month = month, 
Z. account=account AND Z.month = month, 
Q. account=account , 
R. account=account 

Having sum(Q.length)>sum(R.length) 

A restriction of our syntax is that all group-by attributes 
must be derived from a single table, eliminating the need to 
perform a join in the initial step of building the mf-structure. 
As the examples show, a large class of interesting queries 
can be expressed with this restriction. For some queries, 
the group-by attributes might need to be derived from more 
than one table. Example 3.2 illustrates the point. It might 
be the case that during some month, a customer makes no 
purchases, but makes several web accesses. 

Rather than making the EMF semantics more complex, 
we assume that the user will pre-compute a table with the 
group-by entries needed for a query. We feel that this pro- 
cedure does not substantially add to the complexity of the 
query, because the logic for computing the group-by entries 
and the logic for computing the aggregates are separate. 
Furthermore, the group-by table is likely to be computed 
in many queries, and is a good candidate for materialization 
anyway. 

Evaluating multi-table EMF queries is as efficient as eval- 
uating single-table EMF queries. In Example 3.2, six passes 
are needed to compute the query using the basic algorithm. 
However, this is only two passes through the entire data 
set. Pass-reduction optimizations (i.e., none of the grouping 
variable definitions depend on each other, see [4, 61) show 
that only 1 pass through each fact table is required. 

4 Multi-level Aggregation 

Many data analyses require the use of complex, non-distri- 
butive aggregation. In many cases, the aggregate is a rollup 
aggregate (i.e., a summary of aggregates grouped by an addi- 
tional dimension) One common example is the most-frequent 
aggregate, which is a max of a count. Another closely related 
query is, “For 1997, what are the total sales of each prod- 
uct during the month with the maiimum total sales of the 
product?“. 

These aggregates can be phrased as nested aggregation, 
which reflects their rollup nature. For the example query we 
must first find the total sales of each product during each 
month of 1997. Then for each product, we must find the 
month with the maximum total sales. Notice that computing 
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nested aggregates requires that we specify nested levels of 
group-by attributes. In this example, the per-month groups 
are nested within the product groups. 

We introduce some syntax to express nested aggregation 
EMF queries. Informally, the extensions to the EMF syntax 
are: 

1. Group-by nesting is indicated by matching square braces. 

2. The nested group-by attributes are indicated by a group- 
by statement at the end of the nested aggregate state- 
ment . 

3. Grouping variables are listed after the group-by state- 
ment of their associated nesting block. 

4. Nested aggregates are referred to by multiple levels of 
aggregation. 

The definition of the group-by variables can make use of 
the “visible” group-by attribute values of the group, and the 
“visible” aggregates of previously defined grouping variables. 
We defer the definition of “visible”, and present examples to 

make the meaning intuitively clear. 

Example 4.1: The motivating example can be expressed as 
follows. 

Select prod-cat, max(sum(X.amount)) 
From Purchases 
Group By prod-cat 
Such That [(X.prod-cat=prod-cat and X.month=month) 

Group By month ; X3 

The operation of this query can be visualized by the 
example shown in Figure 1. We evaluate the query by build- 
ing an mf-structure table with group-by attribute prod-cat. 
Each mf-structure entry contains space for the aggregate 
max(sum(X.amount)), and also a nested mf-structure with 
group-by attribute month. and aggregate sum(X.amount). 
We make a scan through the Purchases table to compute 
the sum(X.amount), and then for every mf-structure entry, 
make a scan through the nested mf-structure to compute 
max(sum(X.amount)). We note the relationship between 
the nested aggregation table and nested relations [ll] (which 
motivates the name nested aggregation). 

This model of a nested EMF-query is useful for gaining an 
intuition about the semantics of query evaluation. When we 
compute an aggregate of a grouping variable, we use EMF se- 
mantics, but when we compute an aggregate of an aggregate 
(a nested aggregate), we use MF semantics (i.e., each mf- 
structure entry is isolated from the others). An mf-structure 
entry can have more than one nested mf-structure, and the 
nested mf-structure entries can also have nested mf-structure 
entries. A nested mf-structure entry can “see” fields in its 
parent (ancestor) mf-structure entry, but is isolated from 
other nested mf-structure entries. 

To simplify the presentation of the nested EMF query 
evaluation algorithm, we keep the semantics that mf-structure 
entries are single valued. We choose to use multiple mf- 
structure to represent the nested mf-structure. However 
other approaches are possible. One uses a single flat mf- 
structure. We also note that it is possible, and perhaps 
desirable, to develop an evaluation algorithm on the nested 
EMF-table model. 

In the multiple mf-structure approach, the fundamental 
extension to the regular EMF query processing algorithm is 

prod-cat maxbim(X.sales)) 

22 

19 

8 

month sum(X.sales) 
I 

2 15 

6 I 4 

Figure 1: Nested aggregation with nested mf-structures. 

pK&C~t max(sum(X.sales)) pmd-cat month sum(X.s&s) 

shaes 22 

socks 19 

coats 8 

hats 4 

Figure 2: Evaluating a nested group-by query. 

to use one table per nested group-by block, and a restricted 
type of join between them. The mf-structure used in evalu- 
ation of the example query is shown in Figure 2. The first 
table (which contains the final answer) is grouped by prod- 
cat and contains max(sum(X.amount)) summaries, while the 
second table is grouped by prod-cat and month and contains 
(sum(X.amount)) summaries. The second table is built using 
the usual EMF algorithm, and then the first table is built 
from summaries on the second. 

The aggregates in a nested aggregation query can be any 
commutative aggregates, including more complex ones such 
as count-of-min(). More generally, we can use linked aggre- 
gates. Let X and Y be two values defmed.at. a group-by nest- 
ing level. Then, linked-aggr(X,,aggr(Y)) returns the value of 
z in one of the entries of the nested mf-structure in which Y 
has the value aggr(Y). The aggregate aggr(Y) must return a 
value that Y actually takes (e.g., min, max, median, etc.). Be- 
cause there might be several entries in which Y = aggr(Y), 
the linked aggregate (e.g., any, first, last) defines which of 
the entries supplies the value of Y. The quantity X can 
be an aggregate value defined at the nested mf-structure, or 
it can be one of the group-by attributes of the nested mf- 
structure. For example, any( month, max(sum(X.amount)) ) 
returns the month with the maximum amount. We note 
that the quantity returned by a linked aggregate can be 
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computed without using a linked aggregate, but at the cost 
of duplicating the nested aggregation block. 

Example 4.2: For each credit, card customer, find the amount 
spent in the maximum spending month, and that month. 

Select account, year, max (sum (X. amount) ) , 
any( month, max(sum(X.amount)) ) 

From Purchases 
Group By account, year 
Such That [(X.account=account and X.year=year and 

X.month = month) Group By month ; Xl 

This query is evaluated in a manner similar to that of 
the previous example. When the table grouped by (ac- 
count, year) is built from the table grouped by (account, 
year, month), the any aggregate is computed. The current 
value of the max(sum(X.amount)) is stored, and whenever it 
is updated, the month attribute is recorded. 

The nested group-by EMF syntax can use aggregates of 
previously defined grouping variables to define the range of 
new grouping variables. The grouping variable can be de- 
fined at a different level of aggregation. The following exam- 
ple also uses a having clause at the lower level of aggregation. 
The having clause selects the bottom level aggregates that 
can be further aggregated in the top-level result (i.e., MF 
semantics). 

Example 4.3: For each credit card customer, find the months 
of 1997 that have average spending amount greater than the 
1997 yearly average, and output the minimum one for each 
customer. 

Select account, min(avg(Y.amount)), 
any( month, min(avg(Y.amount)) ) 

From Purchases 
Group By account ; X 
Such That ( X.account=account and X.year=1997 ) , 

[ ( Y.account = account and Y.year = 1997 and 
Y.month=month) 
Having avg (Y . amount 1 > avg (X . amount 1 
Group By month ; Y ] 

Figure 3 illustrates the query evaluation, which starts by 
building two mf-structures, the first grouped by account, and 
the second grouped by account and month. A pass is made 
over the Purchases table to build the mf-structure entries. 
Then a second pass is made over the Purchases table to 
compute avg(X.amount), grouped by account. Because this 
value is used in the nested group-by table, it is reflected 
to the second table (the quantity avg(X.amount) is defined 
at the parent mf-structure, and therefore is visible at the 
child mf-structure). The reflection can be accomplished in 
several different ways, but we will use the convention that a 
tuple t from the Purchases table is applied to all entries in 
both mf-structures that have a matching value of account. A 
third pass is made over the Purchases table to compute the 
avg(Y.amount). A fourth pass is made over the second mf- 
structure to compute min(avg(Y.amount)) and any( month, 
min(avg(Y.amount)) ) in the first mf-structure. Only those 
entries in the second mf-structure that satisfy the having 
clause are selected for use in the scan. 

The above example illustrates two key ideas. First, all 
computation is kept completely local. Because the 
avg(X.amount) aggregate is reflected to the nested mf-struc- 
ture, entries in the second mf-structure can be independently 

Figure 3: Evaluating a nested group-by query with a having 
clause. 

evaluated for inclusion in the scan. Second, a having clause 
at nested group-by becomes a such that clause when the 
nested aggregate is computed. In general, nested aggre- 
gates define implicit grouping variables that range over a 
mf-structure. The having clause in a nested group-by block 
lets us introduce multi-feature (though not extended multi- 
feature) semantics. The group-by nesting can be extended 
to multiple levels, as the following example shows. 

Exampie 4.4: For each credit card customer, find the amount 
spent in the minimum of the maximum-spending month in 
any year. 

Select account, min(max(sum(X.amount)) ) , 
first ( year, max(sum(X. amount) ) 1 , 
first ( any( month, max(sum(X.amou.nt)) 1, 
min( max(sum(X.amount)) 1 1 

From Purchases 
Group By account 
Such That [I: X.account=account and X.year=year 

and X.month = month; Group By month ; X 1 
Group By year 1 

This query is evaluated in the usual way, by using three 
mf-structures. Finally, we show an example with multiple 
hierarchies. 

Example 4.5: For each customer, count the number of months 
during which the customer makes a number of purchases 
larger than the number of times that the customer has pur- 
chased their most commonly purchased item. 

From Purchases P 
Select account, count (count (Y .account) ) 
Group By account 
Such That 

[ (X. account=account and X . prod-cat=prod-cat ) 
Group By prod-cat ; X ] 
[ (Y.account=account and Y.month=month) 
Group By month ; Y 
Having count (Y. account) >max(count (X. account) 1 ] 

In this query, count(X.account) counts the number of times 
a customer has purchased a particular product. Therefore, 
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max(count(X.account)) is the number of times the customer 
has purchased their most favorite product. count(Y.account) 
is the number of purchases a customer has made in a particu- 
lar month. We can determine if the customer has made a suf- 
ficiently large number of purchases during a month by testing 
count(Y.account) > max(count( X.account)). To count the 
qualifying months for a customer, we evaluate count(count( 
Y.account)). 

The query is evaluated in a manner similar to the other 
examples. Three mf-structures are used, the first grouped 
by account, the second grouped by account, prod-cat, and the 
third grouped by account, month. The max(count(X.account)) 
aggregate is reflected from the first mf-structure to the third 

In order to precisely define the syntax and evaluation of 
nested EMF queries, we need to make a number of defini- 
tions. Unless otherwise stated, the syntax of nested EMF is 
the same as EMF. 

1. 

2. 

3. 

4. 

5. 

6. 

7. 

8. 

A group-by btock is indicated by a matching set of 
square braces (except for the top level group-by block, 
which is not enclosed by braces). Each group-by block 
defines one of more grouping attributes, and zero or 
more explicit grouping variables, and optionally con- 
tains a having clause. The grouping variables defined 
in the group-by block must be listed after the group-by 
clause, using the usual EMF syntax. 

Let n/ = {Ni, i = 0,. . . , n} to be the set of n + 1 
different group-by blocks in a query. NO is the root 
group-by block. The children of a group-by block N, 
children(N), is the set of all group-by blocks directly 
nested within N. We similarly define parent(N), 
ancestors(N), and descendents(N). 

The level of group-by block N, level(N), is the num- 
ber of matching braces enclosing N. For example, 
ZeveZ( No) = 0. 

The group by attributes of a group-by block N, G(N) 
is the set of attributes listed in the group-by clause of 
N. 

The group-by tag associated with a group-by block N, 
tag(N) is defined by 

Each block N has an mf-strucutre, mf( N). The group- 
by attributes of mf(N) are tug(N). 

A nested aggregate is an expression agg,(agg,-i ( 
. . .aggo(X). ..), w h ere each aggi is an aggregate func- 
tion and n 2 1. A nested aggregate has subaggre- 
gates, agg,-1 (. . . aggo (X) . . .) ,. . . , aggo (X). The child 
of nested aggregate aggn (, , . aggo (X) . . .) ,, . . , aggr (X) 
is agg,,-r(...aggo(X)...) ,..., aggr(X), and the child 
of aggo(X) is X. 

In the case of linked aggregates, the nested aggregates 
form a tree in with branches at each linked aggregate. 
A linked aggregate will have two children, correspond- 
ing to both parameters. Note that the syntactic sugar 
of linked aggregates requires that we strip off one level 
of aggregation from the second parameter. One or both 
of these children might be group-by attributes. 

An explicit grouping variable is a named grouping vari- 
able. The b/o& of an explicit grouping variable V, 

9. 

10. 

11. 

12. 

13. 

bloclc( V), is the nested group-by block in which V is de- 
fined. For shorthand, we define tag(V) = tag(block(V)) 
and mf(V) = mf(block(V)). Also, we define mj( 
aggr(V)) = mf(V) and bZock(aggr(V)) = block(V) for 
each aggregate of V. The range of the explicit grouping 
variable is a fact table. 

The implicit grouping variables are defined implicitly 
by subaggregates of nested aggregates. One implicit 
grouping variable is defined for each unique subaggre- 
gate of each nested aggregate. Let the block of the 
explicit grouping variable X be N. The implicit group- 
ing variable associated with aggo (X), V(aggo (X)), is 
defined at parent(N), and ranges over mf(N) (i.e., 
range(V(aggo(X)) = mf(N)). If the implicit grouping 
variable V(aggi-1 (. . aggo (X))) is defined at node N 
then V(aggi(aggi-I(. . . aggo(X))) is defined at 
parent(N), and ranges over mf(N). 

In the case of linked aggregates, V(agg;(agg’, agg”)) 
is defined at parent(agg’) = porent(agg”), and ranges 
over mf(agg’) = mf(agg”) (note that the syntactic 
sugar of linked aggregates requires that we strip off 
one level of aggregation from the second parameter). 

As is the case with explicit grouping variables, 
mf(aggr(V)) = mf(V) and bZock(aggr(V)) = block(V). 

An explicit grouping variable depends on explicit group- 
ing variables in its definition, and on the implicit group- 
ing variables of the nested aggregates in its definition. 
An implicit grouping variable depends on the grouping 
variable(s) of its child nested aggregate(s), and on the 
explicit and implicit grouping variables in the having 
clause of its block. The dependence graph must be 
acyclic. 

A value of a group-by attribute a is visible at block N if 
a E tag(N). An aggregate value aggr is visible at block 
N if bZock(aggr) E NU ancestors(N). All groupby 
attributes and aggregate values used as constants in the 
such that or having clause in block N must be visible 
at block N. 

If an aggregate agg(V) of a grouping variable V defined 
at block N is used in the definition of a such that or 
having clause in a block N’ E descendent(N), then 
agg(V) is reflected to N’. 

The aggregates defmed at block N, AGG(N) is the set 
of alI aggregates referenced in the query of the implicit 
and explicit grouping variables defined at N, together 
with the aggregates reflected to N. 

Lets consider an example to illustrate these definitions. 

Example 4.6: Let us recall example query 4.5. A diagram 
of this query is shown in Figure 4. This query has three 
group-by blocks: the top-level block NO, the block in which 
X is defined Nr , and block in which Y is defined Nz. We see 
that children(No) = descendent(No) = {Ni, Nz}, and that 
parent = ancestor(N1) = parent(N2) = ancestor(&) 
= {No}. The level of NO is 0, while the level of Nr and 
Nz is 1. The group-by attributes of the blocks are G(No) = 
{account}, G(Nl) = {prod -cat}, and G(Ns) = {month}. 
The tags associated with the blocks (and therefore with their 
mf-structures) are tags(No) = {account}, tags(N1) = 
{account, prod - cat}, and tags(Nz) = {account, month}. 
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Figure 4: Analysis of nested aggregate query example 4.5. 

There are two nested aggregates in the query. The nested 
aggregate count(count(Y.account)) contains one level of nest- 
ing, and therefore contains one subaggregate count(Y.account). 
This subaggregate generates an implicit random variable ZI 
which is defined at NO and which ranges over N2. The 
nested aggregate max(count(X.account)) also contains one 
level of nesting, and therefore contains one subaggregate 
count(X.account). This subaggregate generates an implicit 
random variable Zz which is defined at NO and which ranges 
over NI. The explicit grouping variables have no depen- 
dencies (we show a dependence on the initial pass, Xo that 
builds the mf-structures, but actually X and Y are pass- 
reducible to X0). Th e implicit grouping variable Z2 depends 
on X, and the implicit grouping variable Z1 depends on Y 
and on Z2. Note that the aggregate max(count(X.account)) is 
defined at No, but is reflected at Nz. Therefore, AGG(No) = 
{count(count(Y.account)), max(count(X.account))}, 
AGG(N1) = {count(X.account)}, and AGG(N2) = 
{count(Y.account), max(count(X.account))}. 0 

The extension to the evaluation algorithm required to 
handle nested group-by aggregation is to handle reflected 
aggregates. This requires that during a scan we apply tuples 
to all of the relevant mf-structures. 

Algorithm 4.1: Evaluation of nested EMF queries: 

1) Enumerate the grouping variables by a 
topological sort. 
2) Stage 0 makes a pass through the fact. table to 
build all of the mf-structures. Let there be k 
blocks, No,. . . , N.+-l . For every tuple t encountered 

a) for i = 0 through k - 1 
i) if t[tags(ZV;)] does not exist in mf(Ni), 
create an entry in mf(N;) with key t[tags(Ni)], 
and initialize the aggregates AGG(Ni). 

3) Let there be k group-by variables X1 . . . , Xk., 
enumerated in the order of a topological sort on 
the dependences. 
4) for each group-by variable Xi execute stage i. 

a) Make a scan through the mf-structure range(X,). 
For every tuple t, apply t to every mf-structure 
mf(N) such that there is an aggregate 
agg(Xi) E AGG(N). 

Example 4.7: Let us examine how example query 4.5 would 
be evaluated. A first pass is made through the Purchases ta- 
ble to construct the mf-structure entries for each of mf(No), 
mf(Nl), and mf(Nz). Let us suppose that the topologi- 
cal sort of the implicit and explicit grouping variables on 
their dependences is (X, Y, 22, ZL). A second pass is made 
through the Purchases table to evaluate aggregates of X. 
Since aggregates of X only occur in AGG(Nl), only mf(N~) 
is updated. A third pass is made through the Purchases 
table for grouping variable Y, and only mf(N~) is updated. 
A pass is made through mf(N1) to evaluate aggregates of 
22, which is defined at NO but has an aggregate reflected to 
N2. So, both mf(No) and mf(Nz) are updated. Finally, a 
pass is made through mf(Nz) to evaluate aggregates of 21, 
and only mf(No) is updated. 

An alternative query evaluation algorithm that uses a 
single table can be developed. The idea is to “flatten” the 
k mf-structures into a single table. The group-by key for 
the flattened mf-structure is UNG(N). A group-by block N’ 
is represented by the mf-structure entries with valid values 
in tag(N’) and null values in UNG(N) - tag(N’). Every 
implicit and explicit grouping variable is defined on the mf- 
structure, and the range of every implicit grouping variable 
is the mf-structure. One nice aspect of this approach is that 
reflection occurs automatically. 

An extension to the nested EMF syntax allows nested 
group-by blocks to be named, and explicit grouping variables 
to range over the named group-by blocks. This extension 
can eliminate the need for linked aggregates, and can permit 
certain queries to be expressed more concisely. Space con- 
straints prevent an in-depth discussion. We note that the 
analysis and evaluation of the extended syntax is almost the 
same as the basic nested EMF syntax that wz have presented. 

5 Optimizations 

Because the query evaluation algorithm for the nested and 
multi-table EMF syntax is almost identical to the regular 
EMF query evaluation algorithm, the optimizations that have 
been developed for EMF queries can be carried over to this 
new setting with few or no modifications. In this section, we 
discuss previously proposed optimizations, and also several 
new issues. 

Relative Entries With EMF semantics, a tuple from the 
fact table can be applied to several mf-structure entries (which 
is why EMF is so expressive). The basic EMF query evalu- 
ation algorithm must test every mf-structure entry for every 
fact table tuple on every pass to determine if the tuple is 
a member of a grouping variable for that mf-structure en- 
try. However, the such that clause usually places significant 
restrictions on the range of the grouping variables. These 
restrictions are formalized as relative sets in [4], and can be 
used to define indices on the mf-structure. 

The definitions of relative sets of the explicit grouping 
variables are unaffected by the extensions to EMF proposed 
in this paper. The implicit grouping variables have MF 
semantics, so a tuple referenced by an implicit grouping 
variable is applied to only one parent mf-structure entry 
(which can be found by hashing). 

Dependency Analysis The basic EMF query evaluation 
algorithm makes a pass through the fact table for each group- 
ing variable. The number of passes can be reduced by com- 
puting aggregates of several grouping variables at the same 
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time. The grouping variables that can be processed together 
can be determined by an analysis of the dependency graph. 
If the grouping variables preceding X and Y have already 
been processed, then on the next scan aggregates of both X 
and Y can be computed. 

For the extensions presented in this paper, we need to 
make the additional requirement that range(X) = range(Y) 
in order to apply the optimization. If range(X) # range(Y), 
then aggregates of X and Y can be computed in parallel. 
This optimization is particularly effective if X and Y affect 
non-overlapping mf-structures. We note that our analysis of 
nested EMF queries are likely to lead to a large number of 
implicit grouping variables. By using this optimization, they 
will all be processed in a few passes (perhaps one) over the 
nested mf-structure. 

Parallel Search Since each mf-structure entry is processed 
in isolation, the mf-structure can be partitioned and dis- 
tributed to multiple processors, and a pass over a fact table 
can be performed in parallel. Because nested mf-structures 
are “contained’ in mf-structure entries, the root mf-structure 
partition also defines partitions of the nested mf-structures. 
Passes over the nested mf-structures can be performed in 
parallel with no communication between processors. 

Out-of-core Processing If the mf-structure does not fit 
into memory, it can be partitioned (as discussed above) and 
processed in a partition-wise manner, with only the current 
partition being main-memory resident. 

With nested EMF queries, we can make another opti- 
mization that trades memory for additional table scans. We 
observe that a nested mf-structure MF(N) can be deleted 
once the last grouping variable whose range is N has been 
processed. Further, MF(N’) does not need to be constructed 
until the first grouping variable defined at N’ is processed. If 
all grouping variables whose range is N can processed before 
all grouping variables defined at N’, then after processing 
the last grouping variable whose range is N, we can delete 
N and reuse its space to construct N’. For an example, this 
optimization would work on Example 4.5. Another possible 
optimization is to bring into active memory only the mf- 
structures being referenced by the current grouping variable. 

6 Previous Work 

Several papers discuss query optimization techniques in the 
context of standard SQL that are particularly applicable in 
the processing of complex OLAP queries. Graefe surveys 
various principles and techniques [13]. The issues of ag- 
gregation and join have been studied separately until quite 
recently, when a number of papers on optimization of both 
aggregation and join have appeared [30, 91. Yan and Larson 
in [30] describe a class of transformations that allow the 
query optimizer to push a group-by past a join (eager aggre- 
gation) or pull a group-by above a join (lazy aggregation). 
In a similar direction, Chaudburi and Shim in [9] present 
a similar class of pull-up and push-down transformations. 
Furthermore, they incorporate these transformations in op- 
timizers and propose a cost-based optimization algorithm to 
pick a plan. 

Although these techniques may speed up complex aggre- 
gate processing, they fail to recognize the redundancy incor- 
porated in the SQL expressions of complex OLAP queries: 
frequently these queries are expressed as multiple joins and 
aggregations, but can be evaluated much simpler. Chatzianto- 
niou and Ross in [8] observed that many common decision 

support queries, called group queries, can be processed group- 
wise, i.e. the base relations can be partitioned and processed 
in a group-by-group fashion, although their expression in 
SQL involves several joins. 

However, there exist OLAP queries that are not group 
queries. Extended syntaxes, aiming to succinctness, try to 
deal with inadequate optimization techniques. Succinctness 
means that the users can write and understand queries easier, 
and the system can optimize them better since there is a tight 
coupling between representation and evaluation. 

Several authors have pointed out that SQL cannot sim- 
ply express a number of queries involving grouping and ag- 
gregation [14, 201 Gray, Bosworth, Layman and Pirahesh 
propose a relational aggregation operator, called datacube, 
which is useful in data analysis applications [14]. QUEL [28] 
allows queries in which the range of tuples over which an 
aggregate is computed can be specified. Kimball and Streblo 
in [20] argued that SQL should be extended in order to be 
more powerful (in both syntax and performance) for queries 
related to grouping. They propose a new keyword, called 
ALTERNATE, which is associated with a constraint. This 
constraint replaces all constraints on the same table in the 
surrounding query. 

Our syntax can neatly solve (for a known number of 
columns) the so-called ualzre-to-attribvteconflict or pivoting, 
a case of schematic discrepancies in interoperable databases. 
This conflict occurs when the same information is expressed 
as values in one table and as attributes in another [19, 211. 

7 Conclusions 

Complex data analysis on very large data warehouses require 
an advanced querying tool. One particular limitation of 
existing OLAP databases is their ability to express complex 
aggregates. In object-relational databases, the user can in- 
troduce UDAFs to compute arbitrary aggregates. However, 
defining UDAFs places a significant programming burden on 
the user. In addition, UDAFs are difficult to optimize. 

In previous papers, we have introduced the Extended 
Multi-Feature syntax, which is a small extension to SQL. 
EMF SQL can express many complex aggregation queries in 
a simple and succinct manner. Examples include percent-of- 
total, moving-average, or median aggregates, and pivoting 
queries. In addition, the queries can be evaluated using an 
efficient query processing algorithm that is closely tied to the 
EMF syntax. 

In this paper, we demonstrate that two major extensions 
to EMF-SQL can be accomplished with minor adjustments 
to the EMF-SQL syntax and evaluation algorithm. The 
primary extension is to allow the declarative expression of 
complex non-distributive aggregates through nested aggrega- 
tion, or aggregation over an aggregated table. An example 
of a nested aggregate is a most-frequent aggregate, i.e. max 
of count. Very complex nested aggregation queries can be 
expressed simply and succinctly, and evaluated efficiently. 
The second extension is to allow the grouping variables to 
range over multiple fact tables. This extension lets us apply 
the power of EMF to the problem of integrating data from 
multiple sources. 
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